Kubernetes Informer机制解析

Kubernetes的控制器模式是其非常重要的一个设计模式,整个Kubernetes定义的资源对象以及其状态都保存在etcd数据库中,通过apiserver对其进行增删查改,而各种各样的控制器需要从apiserver及时获取这些对象以及其当前定义的状态,然后将其应用到实际中,即将这些对象的实际状态调整为期望状态,让他们保持匹配。因此各种控制器需要和apiserver进行频繁交互,需要能够及时获取对象状态的变化,而如果简单的通过暴力轮询的话,会给apiserver造成很大的压力,且效率很低,因此,Kubernetes设计了Informer这个机制,用来作为控制器跟apiserver交互的桥梁,它主要有两方面的作用:

  1. 依赖Etcd的List&Watch机制,在本地维护了一份所关心的API对象的缓存。Etcd的Watch机制能够使客户端及时获知这些对象的状态变化,然后更新本地缓存,这样就在客户端为这些API对象维护了一份和Etcd数据库中几乎一致的数据,然后控制器等客户端就可以直接访问缓存获取对象的信息,而不用去直接访问apiserver,这一方面显著提高了性能,另一方面则大大降低了对apiserver的访问压力;
  2. 依赖Etcd的Watch机制,触发控制器等客户端注册到Informer中的事件方法。客户端可能会某些对象的某些事件感兴趣,当这些事件发生时,希望能够执行某些操作,比如通过apiserver新建了一个pod,那么kube-scheduler中的控制器收到了这个事件,然后将这个pod加入到其队列中,等待进行调度。

Kubernetes的各个组件本身就内置了非常多的控制器,而自定义的控制器也需要通过Informer跟apiserver进行交互,因此,Informer在Kubernetes中应用非常广泛,出镜率很高,本篇文章就重点分析下Informer的机制原理,以加深对其的理解。

使用方法

先来看看Informer是怎么用的,以Deployment控制器为例,来看下其使用Informer的相关代码:

1. 创建InformerFactory

1
2
3
4
5
6
7
8
9
10
11
12
13
// kubernetes/cmd/kube-controller-manager/app/controllermanager.go

func CreateControllerContext(logger klog.Logger, s *config.CompletedConfig, rootClientBuilder, clientBuilder clientbuilder.ControllerClientBuilder, stop <-chan struct{}) (ControllerContext, error) {
......
sharedInformers := informers.NewSharedInformerFactory(versionedClient, ResyncPeriod(s)())
......
ctx := ControllerContext{
......
InformerFactory: sharedInformers,
......
}
return ctx, nil
}

NewSharedInformerFactory()最终创建了一个sharedInformerFactory结构体,这个结构主要有两个作用:

1) 用来作为创建Informer的工厂,典型的工厂模式,在Kubernetes中这种设计模式也很常用,下面就是sharedInformerFactory中提供的创建Informer的方法,可见针对某个资源类型的Informer是个单例模式,即如果没有则先创建再返回,如果有,则直接返回,具体创建Informer的逻辑,是通过参数newFunc从外面传进来的方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
// k8s.io/client-go/informers/factory.go

func (f *sharedInformerFactory) InformerFor(obj runtime.Object, newFunc internalinterfaces.NewInformerFunc) cache.SharedIndexInformer {
f.lock.Lock()
defer f.lock.Unlock()

informerType := reflect.TypeOf(obj)
informer, exists := f.informers[informerType]
if exists {
return informer
}

resyncPeriod, exists := f.customResync[informerType]
if !exists {
resyncPeriod = f.defaultResync
}

informer = newFunc(f.client, resyncPeriod)
f.informers[informerType] = informer

return informer
}

2) 共享Informer,所谓共享,就是多个Controller可以共用同一个Informer,因为不同的Controller可能对同一种API对象感兴趣,这样相同的API对象,缓存就只有一份,通知机制也只有一套,大大提高了效率,减少了资源浪费。

创建出来的SharedInformerFactory实例放到了ControllerContext中,供后面使用。

2. 创建Informer

1
2
3
4
5
6
7
8
9
10
11
12
// kubernetes/cmd/kube-controller-manager/app/apps.go

func startDeploymentController(ctx context.Context, controllerContext ControllerContext) (controller.Interface, bool, error) {
dc, err := deployment.NewDeploymentController(
ctx,
controllerContext.InformerFactory.Apps().V1().Deployments(),
controllerContext.InformerFactory.Apps().V1().ReplicaSets(),
controllerContext.InformerFactory.Core().V1().Pods(),
controllerContext.ClientBuilder.ClientOrDie("deployment-controller"),
)
......
}

使用 InformerFactory.Apps().V1().Deployments() 这种方式,最终创建出来的是具体到某个版本的某种资源的Informer,其实是对 InformerFactory 的一个封装,如Deployment资源对应的就是deploymentInformer结构体:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// k8s.io/client-go/informers/factory.go

func (f *sharedInformerFactory) Apps() apps.Interface {
return apps.New(f, f.namespace, f.tweakListOptions)
}

// k8s.io/client-go/informers/apps/interface.go
func (g *group) V1() v1.Interface {
return v1.New(g.factory, g.namespace, g.tweakListOptions)
}

// k8s.io/client-go/informers/apps/v1/interface.go

func (v *version) Deployments() DeploymentInformer {
return &deploymentInformer{factory: v.factory, namespace: v.namespace, tweakListOptions: v.tweakListOptions}
}

该结构体实现了两个方法:Informer()Lister()

1) Informer()

通过上面介绍到的sharedInformerFactory.InformerFor(obj, newFunc)方法获取本资源的Informer,如果不存在则调用newFunc方法创建,这里获取到的Informer才是最终的Informer,即cache.SharedIndexInformer,它是我们本篇文章的重点,相关代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// k8s.io/client-go/informers/apps/v1/deployment.go

func NewFilteredDeploymentInformer(client kubernetes.Interface, namespace string, resyncPeriod time.Duration, indexers cache.Indexers, tweakListOptions internalinterfaces.TweakListOptionsFunc) cache.SharedIndexInformer {
return cache.NewSharedIndexInformer(
&cache.ListWatch{
ListFunc: func(options metav1.ListOptions) (runtime.Object, error) {
if tweakListOptions != nil {
tweakListOptions(&options)
}
return client.AppsV1().Deployments(namespace).List(context.TODO(), options)
},
WatchFunc: func(options metav1.ListOptions) (watch.Interface, error) {
if tweakListOptions != nil {
tweakListOptions(&options)
}
return client.AppsV1().Deployments(namespace).Watch(context.TODO(), options)
},
},
&appsv1.Deployment{},
resyncPeriod,
indexers,
)
}

func (f *deploymentInformer) defaultInformer(client kubernetes.Interface, resyncPeriod time.Duration) cache.SharedIndexInformer {
return NewFilteredDeploymentInformer(client, f.namespace, resyncPeriod, cache.Indexers{cache.NamespaceIndex: cache.MetaNamespaceIndexFunc}, f.tweakListOptions)
}

func (f *deploymentInformer) Informer() cache.SharedIndexInformer {
return f.factory.InformerFor(&appsv1.Deployment{}, f.defaultInformer)
}

2) Lister()

用来获取创建出来的Informer的缓存接口:Indexer,该接口可以用来查询缓存的数据。

1
2
3
4
5
// k8s.io/client-go/informers/apps/v1/deployment.go

func (f *deploymentInformer) Lister() v1.DeploymentLister {
return v1.NewDeploymentLister(f.Informer().GetIndexer())
}

Deployment Controller关心的API对象为Deployment, ReplicaSet, Pod,分别为这三种API对象创建了Informer。

3. 注册事件方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
// kubernetes/pkg/controller/deployment/deployment_controller.go

func NewDeploymentController(ctx context.Context, dInformer appsinformers.DeploymentInformer, rsInformer appsinformers.ReplicaSetInformer, podInformer coreinformers.PodInformer, client clientset.Interface) (*DeploymentController, error) {
dc := &DeploymentController{
client: client,
eventBroadcaster: eventBroadcaster,
eventRecorder: eventBroadcaster.NewRecorder(scheme.Scheme, v1.EventSource{Component: "deployment-controller"}),
queue: workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), "deployment"),
}
......
dInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: func(obj interface{}) {
dc.addDeployment(logger, obj)
},
UpdateFunc: func(oldObj, newObj interface{}) {
dc.updateDeployment(logger, oldObj, newObj)
},
// This will enter the sync loop and no-op, because the deployment has been deleted from the store.
DeleteFunc: func(obj interface{}) {
dc.deleteDeployment(logger, obj)
},
})
rsInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: func(obj interface{}) {
dc.addReplicaSet(logger, obj)
},
UpdateFunc: func(oldObj, newObj interface{}) {
dc.updateReplicaSet(logger, oldObj, newObj)
},
DeleteFunc: func(obj interface{}) {
dc.deleteReplicaSet(logger, obj)
},
})
podInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
DeleteFunc: func(obj interface{}) {
dc.deletePod(logger, obj)
},
})

dc.dLister = dInformer.Lister()
dc.rsLister = rsInformer.Lister()
dc.podLister = podInformer.Lister()
}

这里,首先调用Infomer()创建出来SharedIndexInformer,然后向其中注册事件方法,这样当有对应的事件发生时,就会触发这里注册的方法去做相应的事情。其次调用Lister()获取到缓存接口,就可以通过它来查询Informer中缓存的数据了,而且Informer中缓存的数据,是可以有索引的,这样可以加快查询的速度。

4. 启动Informer

1
2
3
4
5
6
7
// kubernetes/cmd/kube-controller-manager/app/controllermanager.go

func Run(ctx context.Context, c *config.CompletedConfig) error {
......
controllerContext.InformerFactory.Start(controllerContext.Stop)
......
}

这里InformerFactory的启动,会遍历Factory中创建的所有Informer,依次将其启动。

机制解析

Informer的实现都是在client-go这个库中,通过上述的工厂方法,其实最终创建出来的是一个叫做SharedIndexInformer的结构体:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// k8s.io/client-go/tools/cache/shared_informer.go

type sharedIndexInformer struct {
indexer Indexer
controller Controller

processor *sharedProcessor
cacheMutationDetector MutationDetector

listerWatcher ListerWatcher
......
}

func NewSharedIndexInformer(lw ListerWatcher, exampleObject runtime.Object, defaultEventHandlerResyncPeriod time.Duration, indexers Indexers) SharedIndexInformer {
realClock := &clock.RealClock{}
sharedIndexInformer := &sharedIndexInformer{
processor: &sharedProcessor{clock: realClock},
indexer: NewIndexer(DeletionHandlingMetaNamespaceKeyFunc, indexers),
listerWatcher: lw,
objectType: exampleObject,
resyncCheckPeriod: defaultEventHandlerResyncPeriod,
defaultEventHandlerResyncPeriod: defaultEventHandlerResyncPeriod,
cacheMutationDetector: NewCacheMutationDetector(fmt.Sprintf("%T", exampleObject)),
clock: realClock,
}
return sharedIndexInformer
}

可以看到,在创建SharedIndexInformer时,就创建出了processor, indexer等结构,而在Informer启动时,还创建出了controller, fifo queue, reflector等结构,这些结构之间的关系如下图所示:

Reflector

Reflector的作用,就是通过List&Watch的方式,从apiserver获取到感兴趣的对象以及其状态,然后将其放到一个称为”Delta”的先进先出队列中。

所谓的Delta FIFO Queue,就是队列中的元素除了对象本身外,还有针对该对象的事件类型:

1
2
3
4
type Delta struct {
Type DeltaType
Object interface{}
}

目前有5种Type: Added, Updated, Deleted, Replaced, Resync,所以,针对同一个对象,可能有多个Delta元素在队列中,表示对该对象做了不同的操作,比如短时间内,多次对某一个对象进行了更新操作,那么就会有多个Updated类型的Delta放入到队列中。后续队列的消费者,可以根据这些Delta的类型,来回调注册到Informer中的事件方法。

而所谓的List&Watch,就是先调用该API对象的List接口,获取到对象列表,将它们添加到队列中,Delta元素类型为Replaced,然后再调用Watch接口,持续监听该API对象的状态变化事件,将这些事件按照不同的事件类型,组成对应的Delta类型,添加到队列中,Delta元素类型有Added, Updated, Deleted三种。

此外,Informer还会周期性的发送Resync类型的Delta元素到队列中,目的是为了周期性的触发注册到Informer中的事件方法UpdateFunc,保证对象的期望状态和实际状态一致,该周期是由一个叫做resyncPeriod的参数决定的,在向Informer中添加EventHandler时,可以指定该参数,若为0的话,则关闭该功能。需要注意的是,Resync类型的Delta元素中的对象,是通过Indexer从缓存中获取到的,而不是直接从apiserver中拿的,即这里resync的,其实是”缓存”的对象的期望状态和实际状态的一致性。

根据以上Reflector的机制,可以澄清一下Kubernetes中关于控制器模式的一个常见误区,即以为控制器是不断轮询api,不停地调用List和Get,获取到对象的期望状态,其实在文章开头就说过了,这样做会给apiserver造成很大的压力,效率很低,所以才设计了Informer,依赖Etcd的Watch机制,通过事件来获知对象变化状态,建立本地缓存。即使在Informer中,也没有周期性的调用对象的List接口,正常情况下,List&Watch只会执行一次,即先执行List把数据拉过来,放入队列中,后续就进入Watch阶段。

那什么时候才会再执行List呢?其实就是异常的时候,在List或者Watch的过程中,如果有异常,比如apiserver重启了,那么Reflector就开始周期性的执行List&Watch,直到再次正常进入Watch阶段。为了在异常时段,不给apiserver造成压力,这个周期是一个称为backoff的可变的时间间隔,默认是一个指数型的间隔,即越往后重试的间隔越长,到一定时间又会重置回一开始的频率。而且,为了让不同的apiserver能够均匀负载这些Watch请求,客户端会主动断开跟apiserver的连接,这个超时时间为60秒,然后重新发起Watch请求。此外,在控制器重启过程中,也会再次执行List,所以会观察到之前已经创建好的API对象,又重新触发了一遍AddFunc方法。

从以上这些点,可以看出来,Kubernetes在性能和稳定性的提升上,还是下了很多功夫的。

Controller

这里Controller的作用是通过轮询不断从队列中取出Delta元素,根据元素的类型,一方面通过Indexer更新本地的缓存,一方面调用Processor来触发注册到Informer的事件方法:

1
2
3
4
5
6
7
// k8s.io/client-go/tools/cache/controller.go

func (c *controller) processLoop() {
for {
obj, err := c.config.Queue.Pop(PopProcessFunc(c.config.Process))
}
}

这里的c.config.Process是定义在shared_informer.go中的HandleDeltas()方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
// k8s.io/client-go/tools/cache/shared_informer.go

func (s *sharedIndexInformer) HandleDeltas(obj interface{}) error {
s.blockDeltas.Lock()
defer s.blockDeltas.Unlock()

// from oldest to newest
for _, d := range obj.(Deltas) {
switch d.Type {
case Sync, Replaced, Added, Updated:
s.cacheMutationDetector.AddObject(d.Object)
if old, exists, err := s.indexer.Get(d.Object); err == nil && exists {
if err := s.indexer.Update(d.Object); err != nil {
return err
}

isSync := false
switch {
case d.Type == Sync:
// Sync events are only propagated to listeners that requested resync
isSync = true
case d.Type == Replaced:
if accessor, err := meta.Accessor(d.Object); err == nil {
if oldAccessor, err := meta.Accessor(old); err == nil {
// Replaced events that didn't change resourceVersion are treated as resync events
// and only propagated to listeners that requested resync
isSync = accessor.GetResourceVersion() == oldAccessor.GetResourceVersion()
}
}
}
s.processor.distribute(updateNotification{oldObj: old, newObj: d.Object}, isSync)
} else {
if err := s.indexer.Add(d.Object); err != nil {
return err
}
s.processor.distribute(addNotification{newObj: d.Object}, false)
}
case Deleted:
if err := s.indexer.Delete(d.Object); err != nil {
return err
}
s.processor.distribute(deleteNotification{oldObj: d.Object}, false)
}
}
return nil
}

Processer & Listener

Processer和Listener则是触发事件方法的机制,在创建Informer时,会创建一个Processer,而在向Informer中通过调用AddEventHandler()注册事件方法时,会为每一个Handler生成一个Listener,然后将该Lisener中添加到Processer中,每一个Listener中有两个channel:addCh和nextCh。Listener通过select监听在这两个channel上,当Controller从队列中取出新的元素时,会调用processer来给它的listener发送“通知”,这个“通知”就是向addCh中添加一个元素,即add(),然后一个goroutine就会将这个元素从addCh转移到nextCh,即pop(),从而触发另一个goroutine执行注册的事件方法,即run()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
// k8s.io/client-go/tools/cache/shared_informer.go

func (p *sharedProcessor) distribute(obj interface{}, sync bool) {
p.listenersLock.RLock()
defer p.listenersLock.RUnlock()

if sync {
for _, listener := range p.syncingListeners {
listener.add(obj)
}
} else {
for _, listener := range p.listeners {
listener.add(obj)
}
}
}

func (p *processorListener) add(notification interface{}) {
p.addCh <- notification
}

func (p *processorListener) pop() {
defer utilruntime.HandleCrash()
defer close(p.nextCh) // Tell .run() to stop

var nextCh chan<- interface{}
var notification interface{}
for {
select {
case nextCh <- notification:
// Notification dispatched
var ok bool
notification, ok = p.pendingNotifications.ReadOne()
if !ok { // Nothing to pop
nextCh = nil // Disable this select case
}
case notificationToAdd, ok := <-p.addCh:
if !ok {
return
}
if notification == nil { // No notification to pop (and pendingNotifications is empty)
// Optimize the case - skip adding to pendingNotifications
notification = notificationToAdd
nextCh = p.nextCh
} else { // There is already a notification waiting to be dispatched
p.pendingNotifications.WriteOne(notificationToAdd)
}
}
}
}

func (p *processorListener) run() {
// this call blocks until the channel is closed. When a panic happens during the notification
// we will catch it, **the offending item will be skipped!**, and after a short delay (one second)
// the next notification will be attempted. This is usually better than the alternative of never
// delivering again.
stopCh := make(chan struct{})
wait.Until(func() {
for next := range p.nextCh {
switch notification := next.(type) {
case updateNotification:
p.handler.OnUpdate(notification.oldObj, notification.newObj)
case addNotification:
p.handler.OnAdd(notification.newObj)
case deleteNotification:
p.handler.OnDelete(notification.oldObj)
default:
utilruntime.HandleError(fmt.Errorf("unrecognized notification: %T", next))
}
}
// the only way to get here is if the p.nextCh is empty and closed
close(stopCh)
}, 1*time.Second, stopCh)
}

Indexer

Indexer是对缓存进行增删查改的接口,缓存本质上就是用map构建的key:value键值对,都存在items这个map中,key为<namespace>/<name>

1
2
3
4
5
6
7
8
9
type threadSafeMap struct {
lock sync.RWMutex
items map[string]interface{}

// indexers maps a name to an IndexFunc
indexers Indexers
// indices maps a name to an Index
indices Indices
}

而为了加速查询,还可以选择性的给这些缓存添加索引,索引存储在indecies中,所谓索引,就是在向缓存中添加记录时,就将其key添加到索引结构中,在查找时,可以根据索引条件,快速查找到指定的key记录,比如默认有个索引是按照namespace进行索引,可以根据快速找出属于某个namespace的某种对象,而不用去遍历所有的缓存。

Indexer对外提供了Replace(), Resync(), Add(), Update(), Delete(), List(), Get(), GetByKey(), ByIndex()等接口。

总结

本篇对Kubernetes Informer的使用方法和实现原理,进行了深入分析,整体上看,Informer的设计是相当不错的,基于事件机制,一方面构建本地缓存,一方面触发事件方法,使得控制器能够快速响应和快速获取数据,此外,还有诸如共享Informer, resync, index, watch timeout等机制,使得Informer更加高效和稳定,有了Informer,控制器模式可以说是如虎添翼。

最后,其实有一个地方还没有弄明白,就是resync机制是维持的缓存和实际状态的一致性,但是etcd数据库中的对象的状态,和缓存中的对象状态,如果只依靠Watch事件机制的话,能否保证一致性,如果因为某个原因,导致某次事件没有更新到缓存中,那后续这个对象如果没有发生变化的话,就不会有事件再发出来了,而List在正常情况下,又只List一次,这样缓存中的数据就跟数据库中的数据不一致了,就可能会出问题,找了半天没找到针对这种情况的处理,不知道是别有洞天,我没发现,还是这真的是个问题,只是没人遇到过。

作者

hackerain

发布于

2020-12-11

更新于

2023-11-16

许可协议